跳到主要内容

LiteLLM - 入门

https://github.com/BerriAI/litellm

使用 OpenAI 输入/输出格式调用 100+ 个 LLM

  • 将输入转换为提供商的 completion, embeddingimage_generation 端点
  • 一致的输出,文本响应始终可以在 ['choices'][0]['message']['content'] 获取
  • 跨多个部署的重试/回退逻辑(例如 Azure/OpenAI) - 路由器
  • 按项目跟踪花费 & 设置预算 LiteLLM 代理服务器

如何使用 LiteLLM

您可以通过以下方式使用 litellm

  1. LiteLLM 代理服务器 - 服务器 (LLM 网关),用于调用 100+ 个 LLM、负载均衡、跨项目成本跟踪
  2. LiteLLM Python SDK - Python 客户端,用于调用 100+ 个 LLM、负载均衡、成本跟踪

何时使用 LiteLLM 代理服务器 (LLM 网关)

提示

如果您想要一个用于访问多个 LLM 的中心服务 (LLM 网关),请使用 LiteLLM 代理服务器

通常由生成式 AI 赋能/机器学习平台团队使用

  • LiteLLM 代理为您提供了一个统一的接口,用于访问多个 LLM (100+ 个 LLM)
  • 跟踪 LLM 使用情况并设置防护栏
  • 按项目自定义日志记录、防护栏和缓存

何时使用 LiteLLM Python SDK

提示

如果您想在您的 Python 代码中使用 LiteLLM,请使用 LiteLLM Python SDK

通常由构建 LLM 项目的开发者使用

  • LiteLLM SDK 为您提供了一个统一的接口,用于访问多个 LLM (100+ 个 LLM)
  • 跨多个部署的重试/回退逻辑(例如 Azure/OpenAI) - 路由器

LiteLLM Python SDK

基本用法

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)

流式传输

completion 参数中设置 stream=True

from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"

response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)

异常处理

LiteLLM 将所有支持的提供商的异常映射到 OpenAI 异常。我们所有的异常都继承自 OpenAI 的异常类型,因此您针对 OpenAI 的任何错误处理都可以直接与 LiteLLM 一起使用。

from openai.error import OpenAIError
from litellm import completion

os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try:
# some code
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
print(e)

日志记录可观察性 - 记录 LLM 输入/输出 (文档)

LiteLLM 提供了预定义的 Callback 函数,可将数据发送到 MLflow, Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools (API key set up is not required when using MLflow)
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key" # get your key at https://app.lunary.ai/settings
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "helicone"] # log input/output to lunary, mlflow, langfuse, helicone

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

跟踪流式传输的成本、使用情况和延迟

为此使用 Callback 函数 - 更多关于自定义 Callback 的信息: https://docs.litellm.com.cn/docs/observability/custom_callback

import litellm

# track_cost_callback
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
response_cost = kwargs.get("response_cost", 0)
print("streaming response_cost", response_cost)
except:
pass
# set callback
litellm.success_callback = [track_cost_callback] # set custom callback function

# litellm.completion() call
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
],
stream=True
)

LiteLLM 代理服务器 (LLM 网关)

跟踪跨多个项目/人员的花费

ui_3

该代理提供了

  1. 认证 Hook
  2. 日志记录 Hook
  3. 成本跟踪
  4. 速率限制

📖 代理端点 - Swagger 文档

前往此处获取包含密钥 + 速率限制的完整教程 - 此处

代理快速入门 - CLI

pip install 'litellm[proxy]'

步骤 1: 启动 litellm 代理

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

步骤 2: 向代理发送 ChatCompletions 请求

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])

print(response)

更多详情