LiteLLM - 入门
https://github.com/BerriAI/litellm
使用 OpenAI 输入/输出格式调用 100+ 个 LLM
- 将输入转换为提供商的
completion
,embedding
和image_generation
端点 - 一致的输出,文本响应始终可以在
['choices'][0]['message']['content']
获取 - 跨多个部署的重试/回退逻辑(例如 Azure/OpenAI) - 路由器
- 按项目跟踪花费 & 设置预算 LiteLLM 代理服务器
如何使用 LiteLLM
您可以通过以下方式使用 litellm
- LiteLLM 代理服务器 - 服务器 (LLM 网关),用于调用 100+ 个 LLM、负载均衡、跨项目成本跟踪
- LiteLLM Python SDK - Python 客户端,用于调用 100+ 个 LLM、负载均衡、成本跟踪
何时使用 LiteLLM 代理服务器 (LLM 网关)
提示
如果您想要一个用于访问多个 LLM 的中心服务 (LLM 网关),请使用 LiteLLM 代理服务器
通常由生成式 AI 赋能/机器学习平台团队使用
- LiteLLM 代理为您提供了一个统一的接口,用于访问多个 LLM (100+ 个 LLM)
- 跟踪 LLM 使用情况并设置防护栏
- 按项目自定义日志记录、防护栏和缓存
何时使用 LiteLLM Python SDK
提示
如果您想在您的 Python 代码中使用 LiteLLM,请使用 LiteLLM Python SDK
通常由构建 LLM 项目的开发者使用
- LiteLLM SDK 为您提供了一个统一的接口,用于访问多个 LLM (100+ 个 LLM)
- 跨多个部署的重试/回退逻辑(例如 Azure/OpenAI) - 路由器
LiteLLM Python SDK
基本用法
pip install litellm
- OpenAI
- Anthropic
- VertexAI
- NVIDIA
- HuggingFace
- Azure OpenAI
- Ollama
- Openrouter
- Novita AI
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"
response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
response = completion(
model="claude-2",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"
response = completion(
model="chat-bison",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
## set ENV variables
os.environ["NVIDIA_NIM_API_KEY"] = "nvidia_api_key"
os.environ["NVIDIA_NIM_API_BASE"] = "nvidia_nim_endpoint_url"
response = completion(
model="nvidia_nim/<model_name>",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
import os
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
messages=[{ "content": "Hello, how are you?","role": "user"}],
api_base="https://my-endpoint.huggingface.cloud"
)
print(response)
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
"azure/<your_deployment_name>",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)
from litellm import completion
response = completion(
model="ollama/llama2",
messages = [{ "content": "Hello, how are you?","role": "user"}],
api_base="http://localhost:11434"
)
from litellm import completion
import os
## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key"
response = completion(
model="openrouter/google/palm-2-chat-bison",
messages = [{ "content": "Hello, how are you?","role": "user"}],
)
from litellm import completion
import os
## set ENV variables. Visit https://novita.ai/settings/key-management to get your API key
os.environ["NOVITA_API_KEY"] = "novita-api-key"
response = completion(
model="novita/deepseek/deepseek-r1",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
流式传输
在 completion
参数中设置 stream=True
。
- OpenAI
- Anthropic
- VertexAI
- NVIDIA
- HuggingFace
- Azure OpenAI
- Ollama
- Openrouter
- Novita AI
from litellm import completion
import os
## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-api-key"
response = completion(
model="gpt-3.5-turbo",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
## set ENV variables
os.environ["ANTHROPIC_API_KEY"] = "your-api-key"
response = completion(
model="claude-2",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
# auth: run 'gcloud auth application-default'
os.environ["VERTEX_PROJECT"] = "hardy-device-386718"
os.environ["VERTEX_LOCATION"] = "us-central1"
response = completion(
model="chat-bison",
messages=[{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
## set ENV variables
os.environ["NVIDIA_NIM_API_KEY"] = "nvidia_api_key"
os.environ["NVIDIA_NIM_API_BASE"] = "nvidia_nim_endpoint_url"
response = completion(
model="nvidia_nim/<model_name>",
messages=[{ "content": "Hello, how are you?","role": "user"}]
stream=True,
)
from litellm import completion
import os
os.environ["HUGGINGFACE_API_KEY"] = "huggingface_api_key"
# e.g. Call 'WizardLM/WizardCoder-Python-34B-V1.0' hosted on HF Inference endpoints
response = completion(
model="huggingface/WizardLM/WizardCoder-Python-34B-V1.0",
messages=[{ "content": "Hello, how are you?","role": "user"}],
api_base="https://my-endpoint.huggingface.cloud",
stream=True,
)
print(response)
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_API_KEY"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_VERSION"] = ""
# azure call
response = completion(
"azure/<your_deployment_name>",
messages = [{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
response = completion(
model="ollama/llama2",
messages = [{ "content": "Hello, how are you?","role": "user"}],
api_base="http://localhost:11434",
stream=True,
)
from litellm import completion
import os
## set ENV variables
os.environ["OPENROUTER_API_KEY"] = "openrouter_api_key"
response = completion(
model="openrouter/google/palm-2-chat-bison",
messages = [{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
from litellm import completion
import os
## set ENV variables. Visit https://novita.ai/settings/key-management to get your API key
os.environ["NOVITA_API_KEY"] = "novita_api_key"
response = completion(
model="novita/deepseek/deepseek-r1",
messages = [{ "content": "Hello, how are you?","role": "user"}],
stream=True,
)
异常处理
LiteLLM 将所有支持的提供商的异常映射到 OpenAI 异常。我们所有的异常都继承自 OpenAI 的异常类型,因此您针对 OpenAI 的任何错误处理都可以直接与 LiteLLM 一起使用。
from openai.error import OpenAIError
from litellm import completion
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
try:
# some code
completion(model="claude-instant-1", messages=[{"role": "user", "content": "Hey, how's it going?"}])
except OpenAIError as e:
print(e)
日志记录可观察性 - 记录 LLM 输入/输出 (文档)
LiteLLM 提供了预定义的 Callback 函数,可将数据发送到 MLflow, Lunary, Langfuse, Helicone, Promptlayer, Traceloop, Slack
from litellm import completion
## set env variables for logging tools (API key set up is not required when using MLflow)
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key" # get your key at https://app.lunary.ai/settings
os.environ["HELICONE_API_KEY"] = "your-helicone-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["OPENAI_API_KEY"]
# set callbacks
litellm.success_callback = ["lunary", "mlflow", "langfuse", "helicone"] # log input/output to lunary, mlflow, langfuse, helicone
#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])
跟踪流式传输的成本、使用情况和延迟
为此使用 Callback 函数 - 更多关于自定义 Callback 的信息: https://docs.litellm.com.cn/docs/observability/custom_callback
import litellm
# track_cost_callback
def track_cost_callback(
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
try:
response_cost = kwargs.get("response_cost", 0)
print("streaming response_cost", response_cost)
except:
pass
# set callback
litellm.success_callback = [track_cost_callback] # set custom callback function
# litellm.completion() call
response = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "Hi 👋 - i'm openai"
}
],
stream=True
)
LiteLLM 代理服务器 (LLM 网关)
跟踪跨多个项目/人员的花费
该代理提供了
📖 代理端点 - Swagger 文档
前往此处获取包含密钥 + 速率限制的完整教程 - 此处
代理快速入门 - CLI
pip install 'litellm[proxy]'
步骤 1: 启动 litellm 代理
- pip 包
- Docker 容器
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:4000
步骤 1. 创建 config.yaml
litellm_config.yaml
示例
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: azure/<your-azure-model-deployment>
api_base: os.environ/AZURE_API_BASE # runs os.getenv("AZURE_API_BASE")
api_key: os.environ/AZURE_API_KEY # runs os.getenv("AZURE_API_KEY")
api_version: "2023-07-01-preview"
步骤 2. 运行 Docker 镜像
docker run \
-v $(pwd)/litellm_config.yaml:/app/config.yaml \
-e AZURE_API_KEY=d6*********** \
-e AZURE_API_BASE=https://openai-***********/ \
-p 4000:4000 \
ghcr.io/berriai/litellm:main-latest \
--config /app/config.yaml --detailed_debug
步骤 2: 向代理发送 ChatCompletions 请求
import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)