跳到主要内容

缓存 - 内存缓存、Redis、s3、Redis 语义缓存、磁盘缓存

查看代码

信息

初始化缓存 - 内存缓存、Redis、s3 Bucket、Redis 语义缓存、磁盘缓存、Qdrant 语义缓存

安装 redis

pip install redis

对于托管版本,您可以在此处设置您自己的 Redis 数据库:https://redis.ac.cn/try-free/

import litellm
from litellm import completion
from litellm.caching.caching import Cache

litellm.cache = Cache(type="redis", host=<host>, port=<port>, password=<password>)

# Make completion calls
response1 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)
response2 = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Tell me a joke."}]
)

# response1 == response2, response 1 is cached

按每次 LiteLLM 调用开关缓存

LiteLLM 支持 4 种缓存控制参数

  • no-cache: Optional(bool)True 时,将不返回缓存响应,而是调用实际端点。
  • no-store: Optional(bool)True 时,将不缓存响应。
  • ttl: Optional(int) - 将按用户定义的时间(秒)缓存响应。
  • s-maxage: Optional(int) 将只接受在用户定义范围(秒)内的缓存响应。

如果您需要更多参数,请告知我们

no-cache 示例用法 - 当 True 时,将不返回缓存响应

response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello who are you"
}
],
cache={"no-cache": True},
)

缓存上下文管理器 - 启用、禁用、更新缓存

使用上下文管理器可以轻松启用、禁用和更新 litellm 缓存

启用缓存

快速开始启用

litellm.enable_cache()

高级参数

litellm.enable_cache(
type: Optional[Literal["local", "redis", "s3", "disk"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"]]
] = ["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"],
**kwargs,
)

禁用缓存

关闭缓存

litellm.disable_cache()

更新缓存参数 (Redis Host, Port 等)

更新缓存参数

litellm.update_cache(
type: Optional[Literal["local", "redis", "s3", "disk"]] = "local",
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"]]
] = ["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"],
**kwargs,
)

自定义缓存键:

定义函数以返回缓存键

# this function takes in *args, **kwargs and returns the key you want to use for caching
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = kwargs.get("model", "") + str(kwargs.get("messages", "")) + str(kwargs.get("temperature", "")) + str(kwargs.get("logit_bias", ""))
print("key for cache", key)
return key

设置您的函数为 litellm.cache.get_cache_key

from litellm.caching.caching import Cache

cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])

cache.get_cache_key = custom_get_cache_key # set get_cache_key function for your cache

litellm.cache = cache # set litellm.cache to your cache

如何编写自定义 add/get 缓存函数

1. 初始化缓存

from litellm.caching.caching import Cache
cache = Cache()

2. 定义自定义 add/get 缓存函数

def add_cache(self, result, *args, **kwargs):
your logic

def get_cache(self, *args, **kwargs):
your logic

3. 将缓存的 add/get 函数指向您的自定义 add/get 函数

cache.add_cache = add_cache
cache.get_cache = get_cache

缓存初始化参数

def __init__(
self,
type: Optional[Literal["local", "redis", "redis-semantic", "s3", "disk"]] = "local",
supported_call_types: Optional[
List[Literal["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"]]
] = ["completion", "acompletion", "embedding", "aembedding", "atranscription", "transcription"],
ttl: Optional[float] = None,
default_in_memory_ttl: Optional[float] = None,

# redis cache params
host: Optional[str] = None,
port: Optional[str] = None,
password: Optional[str] = None,
namespace: Optional[str] = None,
default_in_redis_ttl: Optional[float] = None,
redis_flush_size=None,

# redis semantic cache params
similarity_threshold: Optional[float] = None,
redis_semantic_cache_embedding_model: str = "text-embedding-ada-002",
redis_semantic_cache_index_name: Optional[str] = None,

# s3 Bucket, boto3 configuration
s3_bucket_name: Optional[str] = None,
s3_region_name: Optional[str] = None,
s3_api_version: Optional[str] = None,
s3_path: Optional[str] = None, # if you wish to save to a specific path
s3_use_ssl: Optional[bool] = True,
s3_verify: Optional[Union[bool, str]] = None,
s3_endpoint_url: Optional[str] = None,
s3_aws_access_key_id: Optional[str] = None,
s3_aws_secret_access_key: Optional[str] = None,
s3_aws_session_token: Optional[str] = None,
s3_config: Optional[Any] = None,

# disk cache params
disk_cache_dir=None,

# qdrant cache params
qdrant_api_base: Optional[str] = None,
qdrant_api_key: Optional[str] = None,
qdrant_collection_name: Optional[str] = None,
qdrant_quantization_config: Optional[str] = None,
qdrant_semantic_cache_embedding_model="text-embedding-ada-002",

**kwargs
):

日志记录

缓存命中会作为 kwarg["cache_hit"] 记录在成功事件中。

这是一个访问它的示例

import litellm
from litellm.integrations.custom_logger import CustomLogger
from litellm import completion, acompletion, Cache

# create custom callback for success_events
class MyCustomHandler(CustomLogger):
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
print(f"Value of Cache hit: {kwargs['cache_hit']"})

async def test_async_completion_azure_caching():
# set custom callback
customHandler_caching = MyCustomHandler()
litellm.callbacks = [customHandler_caching]

# init cache
litellm.cache = Cache(type="redis", host=os.environ['REDIS_HOST'], port=os.environ['REDIS_PORT'], password=os.environ['REDIS_PASSWORD'])
unique_time = time.time()
response1 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1)
print(f"customHandler_caching.states pre-cache hit: {customHandler_caching.states}")
response2 = await litellm.acompletion(model="azure/chatgpt-v-2",
messages=[{
"role": "user",
"content": f"Hi 👋 - i'm async azure {unique_time}"
}],
caching=True)
await asyncio.sleep(1) # success callbacks are done in parallel