跳到主内容

基于标签的路由

根据标签路由请求。这适用于

  • 为用户实现免费/付费层级
  • 按团队控制模型访问,例如团队 A 可以访问 gpt-4 部署 A,团队 B 可以访问 gpt-4 部署 B (团队的 LLM 访问控制)

快速开始

1. 在 config.yaml 中定义标签

  • 包含 tags=["free"] 的请求将被路由到 openai/fake
  • 包含 tags=["paid"] 的请求将被路由到 openai/gpt-4o
model_list:
- model_name: gpt-4
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
tags: ["free"] # 👈 Key Change
- model_name: gpt-4
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
tags: ["paid"] # 👈 Key Change
- model_name: gpt-4
litellm_params:
model: openai/gpt-4o
api_key: os.environ/OPENAI_API_KEY
api_base: https://exampleopenaiendpoint-production.up.railway.app/
tags: ["default"] # OPTIONAL - All untagged requests will get routed to this


router_settings:
enable_tag_filtering: True # 👈 Key Change
general_settings:
master_key: sk-1234

2. 使用 tags=["free"] 发送请求

此请求包含 "tags"["free"],将其路由到 openai/fake

curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Hello, Claude gm!"}
],
"tags": ["free"]
}'

预期响应

当此功能生效时,预期会看到以下响应头

x-litellm-model-api-base: https://exampleopenaiendpoint-production.up.railway.app/

响应

{
"id": "chatcmpl-33c534e3d70148218e2d62496b81270b",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "\n\nHello there, how may I assist you today?",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"created": 1677652288,
"model": "gpt-3.5-turbo-0125",
"object": "chat.completion",
"system_fingerprint": "fp_44709d6fcb",
"usage": {
"completion_tokens": 12,
"prompt_tokens": 9,
"total_tokens": 21
}
}

3. 使用 tags=["paid"] 发送请求

此请求包含 "tags"["paid"],将其路由到 openai/gpt-4

curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "gpt-4",
"messages": [
{"role": "user", "content": "Hello, Claude gm!"}
],
"tags": ["paid"]
}'

预期响应

当此功能生效时,预期会看到以下响应头

x-litellm-model-api-base: https://api.openai.com

响应

{
"id": "chatcmpl-9maCcqQYTqdJrtvfakIawMOIUbEZx",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "Good morning! How can I assist you today?",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"created": 1721365934,
"model": "gpt-4o-2024-05-13",
"object": "chat.completion",
"system_fingerprint": "fp_c4e5b6fa31",
"usage": {
"completion_tokens": 10,
"prompt_tokens": 12,
"total_tokens": 22
}
}

通过请求头调用

您也可以通过请求头 x-litellm-tags 进行调用

curl -L -X POST 'http://0.0.0.0:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-H 'x-litellm-tags: free,my-custom-tag' \
-d '{
"model": "gpt-4",
"messages": [
{
"role": "user",
"content": "Hey, how'\''s it going 123456?"
}
]
}'

设置默认标签

如果您希望所有未打标签的请求都被路由到特定的部署,请使用此选项

  1. 在您的 yaml 中设置默认标签
  model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
tags: ["default"] # 👈 Key Change - All untagged requests will get routed to this
model_info:
id: "default-model" # used for identifying model in response headers
  1. 启动代理
$ litellm --config /path/to/config.yaml
  1. 发送不带标签的请求
curl -i http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-1234" \
-d '{
"model": "fake-openai-endpoint",
"messages": [
{"role": "user", "content": "Hello, Claude gm!"}
]
}'

当此功能生效时,预期会看到以下响应头

x-litellm-model-id: default-model

✨ 基于团队的标签路由(企业版)

LiteLLM 代理支持基于团队的标签路由,允许您将特定标签与团队关联并相应地路由请求。例如:团队 A 可以访问 gpt-4 部署 A,团队 B 可以访问 gpt-4 部署 B (团队的 LLM 访问控制)

信息

以下是如何使用 curl 命令设置和使用基于团队的标签路由

  1. 在您的代理配置中启用标签过滤

    在您的 proxy_config.yaml 中,确保您有以下设置

    model_list:
    - model_name: fake-openai-endpoint
    litellm_params:
    model: openai/fake
    api_key: fake-key
    api_base: https://exampleopenaiendpoint-production.up.railway.app/
    tags: ["teamA"] # 👈 Key Change
    model_info:
    id: "team-a-model" # used for identifying model in response headers
    - model_name: fake-openai-endpoint
    litellm_params:
    model: openai/fake
    api_key: fake-key
    api_base: https://exampleopenaiendpoint-production.up.railway.app/
    tags: ["teamB"] # 👈 Key Change
    model_info:
    id: "team-b-model" # used for identifying model in response headers
    - model_name: fake-openai-endpoint
    litellm_params:
    model: openai/fake
    api_key: fake-key
    api_base: https://exampleopenaiendpoint-production.up.railway.app/
    tags: ["default"] # OPTIONAL - All untagged requests will get routed to this

    router_settings:
    enable_tag_filtering: True # 👈 Key Change

    general_settings:
    master_key: sk-1234
  2. 创建带有标签的团队

    使用 /team/new 端点创建带有特定标签的团队

    # Create Team A
    curl -X POST http://0.0.0.0:4000/team/new \
    -H "Authorization: Bearer sk-1234" \
    -H "Content-Type: application/json" \
    -d '{"tags": ["teamA"]}'
    # Create Team B
    curl -X POST http://0.0.0.0:4000/team/new \
    -H "Authorization: Bearer sk-1234" \
    -H "Content-Type: application/json" \
    -d '{"tags": ["teamB"]}'

    这些命令将返回包含每个团队的 team_id 的 JSON 响应。

  3. 为团队成员生成密钥

    使用 /key/generate 端点创建与特定团队关联的密钥

    # Generate key for Team A
    curl -X POST http://0.0.0.0:4000/key/generate \
    -H "Authorization: Bearer sk-1234" \
    -H "Content-Type: application/json" \
    -d '{"team_id": "team_a_id_here"}'
    # Generate key for Team B
    curl -X POST http://0.0.0.0:4000/key/generate \
    -H "Authorization: Bearer sk-1234" \
    -H "Content-Type: application/json" \
    -d '{"team_id": "team_b_id_here"}'

    team_a_id_hereteam_b_id_here 替换为从步骤 2 获得的实际团队 ID。

  4. 验证路由

    检查响应中的 x-litellm-model-id 头,以确认请求已根据团队的标签路由到正确的模型。您可以使用 curl 的 -i 标志来包含响应头

    使用团队 A 的密钥发送请求(包括头)

    curl -i -X POST http://0.0.0.0:4000/chat/completions \
    -H "Authorization: Bearer team_a_key_here" \
    -H "Content-Type: application/json" \
    -d '{
    "model": "fake-openai-endpoint",
    "messages": [
    {"role": "user", "content": "Hello!"}
    ]
    }'

    在响应头中,您应该看到

    x-litellm-model-id: team-a-model

    类似地,使用团队 B 的密钥时,您应该看到

    x-litellm-model-id: team-b-model

按照这些步骤并使用这些 curl 命令,您可以在 LiteLLM 代理设置中实现和测试基于团队的标签路由,确保不同的团队根据其分配的标签被路由到适当的模型或部署。

其他基于标签的功能