函数调用
检查模型是否支持函数调用
使用 litellm.supports_function_calling(model="")
-> 如果模型支持函数调用则返回 True
,否则返回 False
assert litellm.supports_function_calling(model="gpt-3.5-turbo") == True
assert litellm.supports_function_calling(model="azure/gpt-4-1106-preview") == True
assert litellm.supports_function_calling(model="palm/chat-bison") == False
assert litellm.supports_function_calling(model="xai/grok-2-latest") == True
assert litellm.supports_function_calling(model="ollama/llama2") == False
检查模型是否支持并行函数调用
使用 litellm.supports_parallel_function_calling(model="")
-> 如果模型支持并行函数调用则返回 True
,否则返回 False
assert litellm.supports_parallel_function_calling(model="gpt-4-turbo-preview") == True
assert litellm.supports_parallel_function_calling(model="gpt-4") == False
并行函数调用
并行函数调用是指模型能够同时执行多个函数调用,从而允许并行解析这些函数调用的效果和结果。
快速入门 - gpt-3.5-turbo-1106
在此示例中,我们定义了一个函数 get_current_weather
。
- 步骤 1:将
get_current_weather
函数与用户问题一起发送给模型 - 步骤 2:解析模型响应中的输出 - 使用模型提供的参数执行
get_current_weather
函数 - 步骤 3:将运行
get_current_weather
函数的输出发送给模型
完整代码 - 使用 gpt-3.5-turbo-1106
进行并行函数调用
import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
def test_parallel_function_call():
try:
# Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nFirst LLM Response:\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
print("\nLength of tool calls", len(tool_calls))
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(response_message) # extend conversation with assistant's reply
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
second_response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
) # get a new response from the model where it can see the function response
print("\nSecond LLM response:\n", second_response)
return second_response
except Exception as e:
print(f"Error occurred: {e}")
test_parallel_function_call()
说明 - 并行函数调用
以下是对上面使用 gpt-3.5-turbo-1106
进行并行函数调用的代码片段的解释
步骤 1:调用 litellm.completion() 并将 tools
设置为 get_current_weather
import litellm
import json
# set openai api key
import os
os.environ['OPENAI_API_KEY'] = "" # litellm reads OPENAI_API_KEY from .env and sends the request
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
预期输出
在输出中,您可以看到模型多次调用该函数 - 分别针对旧金山、东京、巴黎
ModelResponse(
id='chatcmpl-8MHBKZ9t6bXuhBvUMzoKsfmmlv7xq',
choices=[
Choices(finish_reason='tool_calls',
index=0,
message=Message(content=None, role='assistant',
tool_calls=[
ChatCompletionMessageToolCall(id='call_DN6IiLULWZw7sobV6puCji1O', function=Function(arguments='{"location": "San Francisco", "unit": "celsius"}', name='get_current_weather'), type='function'),
ChatCompletionMessageToolCall(id='call_ERm1JfYO9AFo2oEWRmWUd40c', function=Function(arguments='{"location": "Tokyo", "unit": "celsius"}', name='get_current_weather'), type='function'),
ChatCompletionMessageToolCall(id='call_2lvUVB1y4wKunSxTenR0zClP', function=Function(arguments='{"location": "Paris", "unit": "celsius"}', name='get_current_weather'), type='function')
]))
],
created=1700319953,
model='gpt-3.5-turbo-1106',
object='chat.completion',
system_fingerprint='fp_eeff13170a',
usage={'completion_tokens': 77, 'prompt_tokens': 88, 'total_tokens': 165},
_response_ms=1177.372
)
步骤 2 - 解析模型响应并执行函数
发送初始请求后,解析模型响应以确定它想要进行的函数调用。在此示例中,我们预期有三个工具调用,每个调用对应一个位置(旧金山、东京和巴黎)。
# Check if the model wants to call a function
if tool_calls:
# Execute the functions and prepare responses
available_functions = {
"get_current_weather": get_current_weather,
}
messages.append(response_message) # Extend conversation with assistant's reply
for tool_call in tool_calls:
print(f"\nExecuting tool call\n{tool_call}")
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
# calling the get_current_weather() function
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
print(f"Result from tool call\n{function_response}\n")
# Extend conversation with function response
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
)
步骤 3 - 第二次调用 litellm.completion()
函数执行完毕后,将每个函数调用的信息及其响应发送给模型。这使得模型能够考虑到函数调用的效果,生成新的响应。
second_response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
)
print("Second Response\n", second_response)
预期输出
ModelResponse(
id='chatcmpl-8MHBLh1ldADBP71OrifKap6YfAd4w',
choices=[
Choices(finish_reason='stop', index=0,
message=Message(content="The current weather in San Francisco is 72°F, in Tokyo it's 10°C, and in Paris it's 22°C.", role='assistant'))
],
created=1700319955,
model='gpt-3.5-turbo-1106',
object='chat.completion',
system_fingerprint='fp_eeff13170a',
usage={'completion_tokens': 28, 'prompt_tokens': 169, 'total_tokens': 197},
_response_ms=1032.431
)
并行函数调用 - Azure OpenAI
# set Azure env variables
import os
os.environ['AZURE_API_KEY'] = "" # litellm reads AZURE_API_KEY from .env and sends the request
os.environ['AZURE_API_BASE'] = "https://openai-gpt-4-test-v-1.openai.azure.com/"
os.environ['AZURE_API_VERSION'] = "2023-07-01-preview"
import litellm
import json
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps({"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"})
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
## Step 1: send the conversation and available functions to the model
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="azure/chatgpt-functioncalling", # model = azure/<your-azure-deployment-name>
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("\nLLM Response1:\n", response)
response_message = response.choices[0].message
tool_calls = response.choices[0].message.tool_calls
print("\nTool Choice:\n", tool_calls)
## Step 2 - Parse the Model Response and Execute Functions
# Check if the model wants to call a function
if tool_calls:
# Execute the functions and prepare responses
available_functions = {
"get_current_weather": get_current_weather,
}
messages.append(response_message) # Extend conversation with assistant's reply
for tool_call in tool_calls:
print(f"\nExecuting tool call\n{tool_call}")
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
# calling the get_current_weather() function
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
print(f"Result from tool call\n{function_response}\n")
# Extend conversation with function response
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
)
## Step 3 - Second litellm.completion() call
second_response = litellm.completion(
model="azure/chatgpt-functioncalling",
messages=messages,
)
print("Second Response\n", second_response)
print("Second Response Message\n", second_response.choices[0].message.content)
已弃用 - 使用 completion(functions=functions)
进行函数调用
import os, litellm
from litellm import completion
os.environ['OPENAI_API_KEY'] = ""
messages = [
{"role": "user", "content": "What is the weather like in Boston?"}
]
# python function that will get executed
def get_current_weather(location):
if location == "Boston, MA":
return "The weather is 12F"
# JSON Schema to pass to OpenAI
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
]
response = completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
print(response)
litellm.function_to_dict - 将函数转换为字典以供 OpenAI 函数调用
function_to_dict
允许您传入函数文档字符串,并生成可用于 OpenAI 函数调用的字典
使用 function_to_dict
- 定义您的函数
get_current_weather
- 为您的函数
get_current_weather
添加文档字符串 - 将函数传递给
litellm.utils.function_to_dict
以获取用于 OpenAI 函数调用的字典
# function with docstring
def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location
Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : {'celsius', 'fahrenheit'}
Temperature unit
Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"
# use litellm.utils.function_to_dict to convert function to dict
function_json = litellm.utils.function_to_dict(get_current_weather)
print(function_json)
function_to_dict 的输出
{
'name': 'get_current_weather',
'description': 'Get the current weather in a given location',
'parameters': {
'type': 'object',
'properties': {
'location': {'type': 'string', 'description': 'The city and state, e.g. San Francisco, CA'},
'unit': {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
},
'required': ['location', 'unit']
}
}
将 function_to_dict 用于函数调用
import os, litellm
from litellm import completion
os.environ['OPENAI_API_KEY'] = ""
messages = [
{"role": "user", "content": "What is the weather like in Boston?"}
]
def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location
Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : str {'celsius', 'fahrenheit'}
Temperature unit
Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"
functions = [litellm.utils.function_to_dict(get_current_weather)]
response = completion(model="gpt-3.5-turbo-0613", messages=messages, functions=functions)
print(response)
不支持函数调用的模型如何进行函数调用
将函数添加到提示词
对于不支持函数调用的模型/提供商,LiteLLM 允许您将函数添加到提示词中:设置 litellm.add_function_to_prompt = True
用法
import os, litellm
from litellm import completion
# IMPORTANT - Set this to TRUE to add the function to the prompt for Non OpenAI LLMs
litellm.add_function_to_prompt = True # set add_function_to_prompt for Non OpenAI LLMs
os.environ['ANTHROPIC_API_KEY'] = ""
messages = [
{"role": "user", "content": "What is the weather like in Boston?"}
]
def get_current_weather(location):
if location == "Boston, MA":
return "The weather is 12F"
functions = [
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location"]
}
}
]
response = completion(model="claude-2", messages=messages, functions=functions)
print(response)