跳到主要内容

模拟 Completion() 响应 - 节省测试成本 💰

出于测试目的,您可以使用带有 mock_responsecompletion() 来模拟调用 completion 端点。

这将返回一个带有默认响应的响应对象(也适用于流式传输),而无需调用 LLM API。

快速开始

from litellm import completion 

model = "gpt-3.5-turbo"
messages = [{"role":"user", "content":"This is a test request"}]

completion(model=model, messages=messages, mock_response="It's simple to use and easy to get started")

流式传输

from litellm import completion 
model = "gpt-3.5-turbo"
messages = [{"role": "user", "content": "Hey, I'm a mock request"}]
response = completion(model=model, messages=messages, stream=True, mock_response="It's simple to use and easy to get started")
for chunk in response:
print(chunk) # {'choices': [{'delta': {'role': 'assistant', 'content': 'Thi'}, 'finish_reason': None}]}
complete_response += chunk["choices"][0]["delta"]["content"]

(非流式传输)模拟响应对象

{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "This is a mock request",
"role": "assistant",
"logprobs": null
}
}
],
"created": 1694459929.4496052,
"model": "MockResponse",
"usage": {
"prompt_tokens": null,
"completion_tokens": null,
"total_tokens": null
}
}

使用带有 completionmock_response 构建 pytest 函数

from litellm import completion
import pytest

def test_completion_openai():
try:
response = completion(
model="gpt-3.5-turbo",
messages=[{"role":"user", "content":"Why is LiteLLM amazing?"}],
mock_response="LiteLLM is awesome"
)
# Add any assertions here to check the response
print(response)
assert(response['choices'][0]['message']['content'] == "LiteLLM is awesome")
except Exception as e:
pytest.fail(f"Error occurred: {e}")