可靠性 - 重试, 回退
LiteLLM 通过 2 种方式帮助防止请求失败
- 重试
- 回退: 上下文窗口 + 通用
辅助工具
LiteLLM 支持以下可靠性功能
litellm.longer_context_model_fallback_dict
: 具有更大等效模型的映射字典num_retries
: 使用 tenacity 重试completion()
带回退: 在发生错误时切换模型/密钥/API 基址。
重试失败的请求
在 completion() 中像这样调用 completion(..num_retries=2)
。
以下是如何快速使用它的示例
from litellm import completion
user_message = "Hello, whats the weather in San Francisco??"
messages = [{"content": user_message, "role": "user"}]
# normal call
response = completion(
model="gpt-3.5-turbo",
messages=messages,
num_retries=2
)
回退 (SDK)
上下文窗口回退 (SDK)
from litellm import completion
fallback_dict = {"gpt-3.5-turbo": "gpt-3.5-turbo-16k"}
messages = [{"content": "how does a court case get to the Supreme Court?" * 500, "role": "user"}]
completion(model="gpt-3.5-turbo", messages=messages, context_window_fallback_dict=fallback_dict)
回退 - 切换模型/API 密钥/API 基址 (SDK)
LLM API 可能不稳定, 带回退的 completion() 可确保您的调用始终获得响应
用法
要将回退模型与 completion()
一起使用, 请在 fallbacks
参数中指定模型列表。
fallbacks
列表应包含您想要使用的主要模型, 然后是可作为备份的其他模型, 以防主要模型未能提供响应。
切换模型
response = completion(model="bad-model", messages=messages,
fallbacks=["gpt-3.5-turbo" "command-nightly"])
切换 API 密钥/基址 (例如 Azure 部署)
可在同一 Azure 部署的不同密钥之间切换, 或使用另一个部署。
api_key="bad-key"
response = completion(model="azure/gpt-4", messages=messages, api_key=api_key,
fallbacks=[{"api_key": "good-key-1"}, {"api_key": "good-key-2", "api_base": "good-api-base-2"}])
实现细节 (SDK)
回退
调用输出
Completion with 'bad-model': got exception Unable to map your input to a model. Check your input - {'model': 'bad-model'
completion call gpt-3.5-turbo
{
"id": "chatcmpl-7qTmVRuO3m3gIBg4aTmAumV1TmQhB",
"object": "chat.completion",
"created": 1692741891,
"model": "gpt-3.5-turbo-0613",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "I apologize, but as an AI, I do not have the capability to provide real-time weather updates. However, you can easily check the current weather in San Francisco by using a search engine or checking a weather website or app."
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 16,
"completion_tokens": 46,
"total_tokens": 62
}
}
回退的工作原理
当您将 fallbacks
传递给 completion
时, 它会使用在 completion(model=model)
中指定为 model
的主要模型进行首次 completion
调用。如果主要模型失败或遇到错误, 它会自动按指定顺序尝试 fallbacks
中的模型。即使主要模型不可用, 这也能确保获得响应。
模型回退实现的关键组成部分:
- 遍历
fallbacks
- 限速模型的冷却时间
遍历 fallbacks
为每个请求分配 45秒
。在这 45 秒内, 此函数会尝试调用设置为 model
的主要模型。如果模型失败, 它会遍历备份 fallbacks
中的模型, 并在此处设置的 45秒
分配时间内尝试获取响应。
while response == None and time.time() - start_time < 45:
for model in fallbacks:
限速模型的冷却时间
如果模型 API 调用导致错误 - 允许其冷却 60秒
except Exception as e:
print(f"got exception {e} for model {model}")
rate_limited_models.add(model)
model_expiration_times[model] = (
time.time() + 60
) # cool down this selected model
pass
在进行 LLM API 调用之前, 我们会检查选定的模型是否在 rate_limited_models
中, 如果是, 则跳过进行 API 调用
if (
model in rate_limited_models
): # check if model is currently cooling down
if (
model_expiration_times.get(model)
and time.time() >= model_expiration_times[model]
):
rate_limited_models.remove(
model
) # check if it's been 60s of cool down and remove model
else:
continue # skip model
带回退的 completion() 完整代码
response = None
rate_limited_models = set()
model_expiration_times = {}
start_time = time.time()
fallbacks = [kwargs["model"]] + kwargs["fallbacks"]
del kwargs["fallbacks"] # remove fallbacks so it's not recursive
while response == None and time.time() - start_time < 45:
for model in fallbacks:
# loop thru all models
try:
if (
model in rate_limited_models
): # check if model is currently cooling down
if (
model_expiration_times.get(model)
and time.time() >= model_expiration_times[model]
):
rate_limited_models.remove(
model
) # check if it's been 60s of cool down and remove model
else:
continue # skip model
# delete model from kwargs if it exists
if kwargs.get("model"):
del kwargs["model"]
print("making completion call", model)
response = litellm.completion(**kwargs, model=model)
if response != None:
return response
except Exception as e:
print(f"got exception {e} for model {model}")
rate_limited_models.add(model)
model_expiration_times[model] = (
time.time() + 60
) # cool down this selected model
pass
return response