跳到主要内容

Azure AI Studio

LiteLLM 支持 Azure AI Studio 上的所有模型

用法

环境变量

import os 
os.environ["AZURE_AI_API_KEY"] = ""
os.environ["AZURE_AI_API_BASE"] = ""

示例调用

from litellm import completion
import os
## set ENV variables
os.environ["AZURE_AI_API_KEY"] = "azure ai key"
os.environ["AZURE_AI_API_BASE"] = "azure ai base url" # e.g.: https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com/

# predibase llama-3 call
response = completion(
model="azure_ai/command-r-plus",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)

传递额外参数 - max_tokens, temperature

查看所有 litellm.completion 支持的参数 这里

# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_AI_API_KEY"] = "azure ai api key"
os.environ["AZURE_AI_API_BASE"] = "azure ai api base"

# command r plus call
response = completion(
model="azure_ai/command-r-plus",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)

代理

  model_list:
- model_name: command-r-plus
litellm_params:
model: azure_ai/command-r-plus
api_key: os.environ/AZURE_AI_API_KEY
api_base: os.environ/AZURE_AI_API_BASE
max_tokens: 20
temperature: 0.5
  1. 启动代理

    $ litellm --config /path/to/config.yaml
  2. 向 LiteLLM 代理服务器发送请求

    import openai
    client = openai.OpenAI(
    api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
    )

    response = client.chat.completions.create(
    model="mistral",
    messages = [
    {
    "role": "user",
    "content": "what llm are you"
    }
    ],
    )

    print(response)

函数调用

from litellm import completion

# set env
os.environ["AZURE_AI_API_KEY"] = "your-api-key"
os.environ["AZURE_AI_API_BASE"] = "your-api-base"

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="azure_ai/mistral-large-latest",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

支持的模型

LiteLLM 支持所有 Azure AI 模型。以下是一些示例

模型名称函数调用
Cohere command-r-pluscompletion(model="azure_ai/command-r-plus", messages)
Cohere command-rcompletion(model="azure_ai/command-r", messages)
mistral-large-latestcompletion(model="azure_ai/mistral-large-latest", messages)
AI21-Jamba-Instructcompletion(model="azure_ai/ai21-jamba-instruct", messages)

重排端点

用法

from litellm import rerank
import os

os.environ["AZURE_AI_API_KEY"] = "sk-.."
os.environ["AZURE_AI_API_BASE"] = "https://.."

query = "What is the capital of the United States?"
documents = [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country.",
]

response = rerank(
model="azure_ai/rerank-english-v3.0",
query=query,
documents=documents,
top_n=3,
)
print(response)