跳到主要内容

自定义 API 服务器 (自定义格式)

通过 LiteLLM 调用你的自定义 torch-serve / 内部 LLM API

提示

快速开始

import litellm
from litellm import CustomLLM, completion, get_llm_provider


class MyCustomLLM(CustomLLM):
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore

my_custom_llm = MyCustomLLM()

litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
]

resp = completion(
model="my-custom-llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
)

assert resp.choices[0].message.content == "Hi!"

OpenAI 代理用法

  1. 设置你的 custom_handler.py 文件
import litellm
from litellm import CustomLLM, completion, get_llm_provider


class MyCustomLLM(CustomLLM):
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore

async def acompletion(self, *args, **kwargs) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore


my_custom_llm = MyCustomLLM()
  1. 添加到 config.yaml

在下面的配置中,我们传递

python_filename: custom_handler.py custom_handler_instance_name: my_custom_llm。这在步骤 1 中定义

custom_handler: custom_handler.my_custom_llm

model_list:
- model_name: "test-model"
litellm_params:
model: "openai/text-embedding-ada-002"
- model_name: "my-custom-model"
litellm_params:
model: "my-custom-llm/my-model"

litellm_settings:
custom_provider_map:
- {"provider": "my-custom-llm", "custom_handler": custom_handler.my_custom_llm}
litellm --config /path/to/config.yaml
  1. 测试它!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "my-custom-model",
"messages": [{"role": "user", "content": "Say \"this is a test\" in JSON!"}],
}'

预期响应

{
"id": "chatcmpl-06f1b9cd-08bc-43f7-9814-a69173921216",
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "Hi!",
"role": "assistant",
"tool_calls": null,
"function_call": null
}
}
],
"created": 1721955063,
"model": "gpt-3.5-turbo",
"object": "chat.completion",
"system_fingerprint": null,
"usage": {
"prompt_tokens": 10,
"completion_tokens": 20,
"total_tokens": 30
}
}

添加流式支持

这里有一个简单的例子,用于返回补全和流式使用场景的 Unix Epoch 秒数。

鸣谢 @Eloy Lafuente 提供的此代码示例。

import time
from typing import Iterator, AsyncIterator
from litellm.types.utils import GenericStreamingChunk, ModelResponse
from litellm import CustomLLM, completion, acompletion

class UnixTimeLLM(CustomLLM):
def completion(self, *args, **kwargs) -> ModelResponse:
return completion(
model="test/unixtime",
mock_response=str(int(time.time())),
) # type: ignore

async def acompletion(self, *args, **kwargs) -> ModelResponse:
return await acompletion(
model="test/unixtime",
mock_response=str(int(time.time())),
) # type: ignore

def streaming(self, *args, **kwargs) -> Iterator[GenericStreamingChunk]:
generic_streaming_chunk: GenericStreamingChunk = {
"finish_reason": "stop",
"index": 0,
"is_finished": True,
"text": str(int(time.time())),
"tool_use": None,
"usage": {"completion_tokens": 0, "prompt_tokens": 0, "total_tokens": 0},
}
return generic_streaming_chunk # type: ignore

async def astreaming(self, *args, **kwargs) -> AsyncIterator[GenericStreamingChunk]:
generic_streaming_chunk: GenericStreamingChunk = {
"finish_reason": "stop",
"index": 0,
"is_finished": True,
"text": str(int(time.time())),
"tool_use": None,
"usage": {"completion_tokens": 0, "prompt_tokens": 0, "total_tokens": 0},
}
yield generic_streaming_chunk # type: ignore

unixtime = UnixTimeLLM()

图像生成

  1. 设置你的 custom_handler.py 文件
import litellm
from litellm import CustomLLM
from litellm.types.utils import ImageResponse, ImageObject


class MyCustomLLM(CustomLLM):
async def aimage_generation(self, model: str, prompt: str, model_response: ImageResponse, optional_params: dict, logging_obj: Any, timeout: Optional[Union[float, httpx.Timeout]] = None, client: Optional[AsyncHTTPHandler] = None,) -> ImageResponse:
return ImageResponse(
created=int(time.time()),
data=[ImageObject(url="https://example.com/image.png")],
)

my_custom_llm = MyCustomLLM()
  1. 添加到 config.yaml

在下面的配置中,我们传递

python_filename: custom_handler.py custom_handler_instance_name: my_custom_llm。这在步骤 1 中定义

custom_handler: custom_handler.my_custom_llm

model_list:
- model_name: "test-model"
litellm_params:
model: "openai/text-embedding-ada-002"
- model_name: "my-custom-model"
litellm_params:
model: "my-custom-llm/my-model"

litellm_settings:
custom_provider_map:
- {"provider": "my-custom-llm", "custom_handler": custom_handler.my_custom_llm}
litellm --config /path/to/config.yaml
  1. 测试它!
curl -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "my-custom-model",
"prompt": "A cute baby sea otter",
}'

预期响应

{
"created": 1721955063,
"data": [{"url": "https://example.com/image.png"}],
}

附加参数

附加参数在 completionimage_generation 函数中通过 optional_params 键传递。

以下是如何设置它

import litellm
from litellm import CustomLLM, completion, get_llm_provider


class MyCustomLLM(CustomLLM):
def completion(self, *args, **kwargs) -> litellm.ModelResponse:
assert kwargs["optional_params"] == {"my_custom_param": "my-custom-param"} # 👈 CHECK HERE
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore

my_custom_llm = MyCustomLLM()

litellm.custom_provider_map = [ # 👈 KEY STEP - REGISTER HANDLER
{"provider": "my-custom-llm", "custom_handler": my_custom_llm}
]

resp = completion(model="my-custom-llm/my-model", my_custom_param="my-custom-param")
  1. 设置你的 custom_handler.py 文件
import litellm
from litellm import CustomLLM
from litellm.types.utils import ImageResponse, ImageObject


class MyCustomLLM(CustomLLM):
async def aimage_generation(self, model: str, prompt: str, model_response: ImageResponse, optional_params: dict, logging_obj: Any, timeout: Optional[Union[float, httpx.Timeout]] = None, client: Optional[AsyncHTTPHandler] = None,) -> ImageResponse:
assert optional_params == {"my_custom_param": "my-custom-param"} # 👈 CHECK HERE
return ImageResponse(
created=int(time.time()),
data=[ImageObject(url="https://example.com/image.png")],
)

my_custom_llm = MyCustomLLM()
  1. 添加到 config.yaml

在下面的配置中,我们传递

python_filename: custom_handler.py custom_handler_instance_name: my_custom_llm。这在步骤 1 中定义

custom_handler: custom_handler.my_custom_llm

model_list:
- model_name: "test-model"
litellm_params:
model: "openai/text-embedding-ada-002"
- model_name: "my-custom-model"
litellm_params:
model: "my-custom-llm/my-model"
my_custom_param: "my-custom-param" # 👈 CUSTOM PARAM

litellm_settings:
custom_provider_map:
- {"provider": "my-custom-llm", "custom_handler": custom_handler.my_custom_llm}
litellm --config /path/to/config.yaml
  1. 测试它!
curl -X POST 'http://0.0.0.0:4000/v1/images/generations' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "my-custom-model",
"prompt": "A cute baby sea otter",
}'

自定义处理器规范

from litellm.types.utils import GenericStreamingChunk, ModelResponse, ImageResponse
from typing import Iterator, AsyncIterator, Any, Optional, Union
from litellm.llms.base import BaseLLM

class CustomLLMError(Exception): # use this for all your exceptions
def __init__(
self,
status_code,
message,
):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs

class CustomLLM(BaseLLM):
def __init__(self) -> None:
super().__init__()

def completion(self, *args, **kwargs) -> ModelResponse:
raise CustomLLMError(status_code=500, message="Not implemented yet!")

def streaming(self, *args, **kwargs) -> Iterator[GenericStreamingChunk]:
raise CustomLLMError(status_code=500, message="Not implemented yet!")

async def acompletion(self, *args, **kwargs) -> ModelResponse:
raise CustomLLMError(status_code=500, message="Not implemented yet!")

async def astreaming(self, *args, **kwargs) -> AsyncIterator[GenericStreamingChunk]:
raise CustomLLMError(status_code=500, message="Not implemented yet!")

def image_generation(
self,
model: str,
prompt: str,
model_response: ImageResponse,
optional_params: dict,
logging_obj: Any,
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[HTTPHandler] = None,
) -> ImageResponse:
raise CustomLLMError(status_code=500, message="Not implemented yet!")

async def aimage_generation(
self,
model: str,
prompt: str,
model_response: ImageResponse,
optional_params: dict,
logging_obj: Any,
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[AsyncHTTPHandler] = None,
) -> ImageResponse:
raise CustomLLMError(status_code=500, message="Not implemented yet!")