Fireworks AI
信息
我们支持所有 Fireworks AI 模型,只需在发送补全请求时将 fireworks_ai/
设置为前缀
属性 | 详情 |
---|---|
描述 | 最快、最高效的推理引擎,用于构建可用于生产环境的复合 AI 系统。 |
LiteLLM 上的提供商路由 | fireworks_ai/ |
提供商文档 | Fireworks AI ↗ |
支持的 OpenAI 终端节点 | /chat/completions , /embeddings , /completions , /audio/transcriptions |
概述
本指南介绍了如何将 LiteLLM 与 Fireworks AI 集成。您可以通过三种主要方式连接到 Fireworks AI
- 使用 Fireworks AI 无服务器模型 – 轻松连接到 Fireworks 管理的模型。
- 连接到您自己的 Fireworks 账户中的模型 – 访问托管在您 Fireworks 账户中的模型。
- 通过直接路由部署连接 – 更灵活、可定制地连接到特定的 Fireworks 实例。
API 密钥
# env variable
os.environ['FIREWORKS_AI_API_KEY']
示例用法 - 无服务器模型
from litellm import completion
import os
os.environ['FIREWORKS_AI_API_KEY'] = ""
response = completion(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)
示例用法 - 无服务器模型 - 流式传输
from litellm import completion
import os
os.environ['FIREWORKS_AI_API_KEY'] = ""
response = completion(
model="fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct",
messages=[
{"role": "user", "content": "hello from litellm"}
],
stream=True
)
for chunk in response:
print(chunk)
示例用法 - 您自己的 Fireworks 账户中的模型
from litellm import completion
import os
os.environ['FIREWORKS_AI_API_KEY'] = ""
response = completion(
model="fireworks_ai/accounts/fireworks/models/YOUR_MODEL_ID",
messages=[
{"role": "user", "content": "hello from litellm"}
],
)
print(response)
示例用法 - 直接路由部署
from litellm import completion
import os
os.environ['FIREWORKS_AI_API_KEY'] = "YOUR_DIRECT_API_KEY"
response = completion(
model="fireworks_ai/accounts/fireworks/models/qwen2p5-coder-7b#accounts/gitlab/deployments/2fb7764c",
messages=[
{"role": "user", "content": "hello from litellm"}
],
api_base="https://gitlab-2fb7764c.direct.fireworks.ai/v1"
)
print(response)
注意: 上述示例适用于聊天接口,如果您想使用文本补全接口,模型名称应为 model="text-completion-openai/accounts/fireworks/models/qwen2p5-coder-7b#accounts/gitlab/deployments/2fb7764c"
与 LiteLLM 代理一起使用
1. 在 config.yaml 中设置 Fireworks AI 模型
model_list:
- model_name: fireworks-llama-v3-70b-instruct
litellm_params:
model: fireworks_ai/accounts/fireworks/models/llama-v3-70b-instruct
api_key: "os.environ/FIREWORKS_AI_API_KEY"
2. 启动代理
litellm --config config.yaml
3. 测试
- Curl 请求
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "fireworks-llama-v3-70b-instruct",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="fireworks-llama-v3-70b-instruct", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "fireworks-llama-v3-70b-instruct",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
文档内联
LiteLLM 支持 Fireworks AI 模型的文档内联。这对于非视觉模型但仍需要解析文档/图像等的模型非常有用。
如果模型不是视觉模型,LiteLLM 会将 #transform=inline
添加到 image_url 的 url 中。查看代码
- SDK
- 代理
from litellm import completion
import os
os.environ["FIREWORKS_AI_API_KEY"] = "YOUR_API_KEY"
os.environ["FIREWORKS_AI_API_BASE"] = "https://audio-prod.us-virginia-1.direct.fireworks.ai/v1"
completion = litellm.completion(
model="fireworks_ai/accounts/fireworks/models/llama-v3p3-70b-instruct",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://storage.googleapis.com/fireworks-public/test/sample_resume.pdf"
},
},
{
"type": "text",
"text": "What are the candidate's BA and MBA GPAs?",
},
],
}
],
)
print(completion)
- 设置 config.yaml
model_list:
- model_name: llama-v3p3-70b-instruct
litellm_params:
model: fireworks_ai/accounts/fireworks/models/llama-v3p3-70b-instruct
api_key: os.environ/FIREWORKS_AI_API_KEY
# api_base: os.environ/FIREWORKS_AI_API_BASE [OPTIONAL], defaults to "https://api.fireworks.ai/inference/v1"
- 启动代理
litellm --config config.yaml
- 测试
curl -L -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer YOUR_API_KEY' \
-d '{"model": "llama-v3p3-70b-instruct",
"messages": [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://storage.googleapis.com/fireworks-public/test/sample_resume.pdf"
},
},
{
"type": "text",
"text": "What are the candidate's BA and MBA GPAs?",
},
],
}
]}'
禁用自动添加
如果您想禁用将 #transform=inline
自动添加到 image_url 的 url 中,可以在 FireworksAIConfig
类中将 auto_add_transform_inline
设置为 False
。
- SDK
- 代理
litellm.disable_add_transform_inline_image_block = True
litellm_settings:
disable_add_transform_inline_image_block: true
支持的模型 - 支持所有 Fireworks AI 模型!
信息
我们支持所有 Fireworks AI 模型,只需在发送补全请求时将 fireworks_ai/
设置为前缀
模型名称 | 函数调用 |
---|---|
llama-v3p2-1b-instruct | completion(model="fireworks_ai/llama-v3p2-1b-instruct", messages) |
llama-v3p2-3b-instruct | completion(model="fireworks_ai/llama-v3p2-3b-instruct", messages) |
llama-v3p2-11b-vision-instruct | completion(model="fireworks_ai/llama-v3p2-11b-vision-instruct", messages) |
llama-v3p2-90b-vision-instruct | completion(model="fireworks_ai/llama-v3p2-90b-vision-instruct", messages) |
mixtral-8x7b-instruct | completion(model="fireworks_ai/mixtral-8x7b-instruct", messages) |
firefunction-v1 | completion(model="fireworks_ai/firefunction-v1", messages) |
llama-v2-70b-chat | completion(model="fireworks_ai/llama-v2-70b-chat", messages) |
支持的 Embedding 模型
信息
我们支持所有 Fireworks AI 模型,只需在发送 embedding 请求时将 fireworks_ai/
设置为前缀
模型名称 | 函数调用 |
---|---|
fireworks_ai/nomic-ai/nomic-embed-text-v1.5 | response = litellm.embedding(model="fireworks_ai/nomic-ai/nomic-embed-text-v1.5", input=input_text) |
fireworks_ai/nomic-ai/nomic-embed-text-v1 | response = litellm.embedding(model="fireworks_ai/nomic-ai/nomic-embed-text-v1", input=input_text) |
fireworks_ai/WhereIsAI/UAE-Large-V1 | response = litellm.embedding(model="fireworks_ai/WhereIsAI/UAE-Large-V1", input=input_text) |
fireworks_ai/thenlper/gte-large | response = litellm.embedding(model="fireworks_ai/thenlper/gte-large", input=input_text) |
fireworks_ai/thenlper/gte-base | response = litellm.embedding(model="fireworks_ai/thenlper/gte-base", input=input_text) |
音频转录
快速入门
- SDK
- 代理
from litellm import transcription
import os
os.environ["FIREWORKS_AI_API_KEY"] = "YOUR_API_KEY"
os.environ["FIREWORKS_AI_API_BASE"] = "https://audio-prod.us-virginia-1.direct.fireworks.ai/v1"
response = transcription(
model="fireworks_ai/whisper-v3",
audio=audio_file,
)
- 设置 config.yaml
model_list:
- model_name: whisper-v3
litellm_params:
model: fireworks_ai/whisper-v3
api_base: https://audio-prod.us-virginia-1.direct.fireworks.ai/v1
api_key: os.environ/FIREWORKS_API_KEY
model_info:
mode: audio_transcription
- 启动代理
litellm --config config.yaml
- 测试
curl -L -X POST 'http://0.0.0.0:4000/v1/audio/transcriptions' \
-H 'Authorization: Bearer sk-1234' \
-F 'file=@"/Users/krrishdholakia/Downloads/gettysburg.wav"' \
-F 'model="whisper-v3"' \
-F 'response_format="verbose_json"' \