OpenAI(文本补全)
LiteLLM 支持 OpenAI 文本补全模型
所需的 API 密钥
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
用法
import os
from litellm import completion
os.environ["OPENAI_API_KEY"] = "your-api-key"
# openai call
response = completion(
model = "gpt-3.5-turbo-instruct",
messages=[{ "content": "Hello, how are you?","role": "user"}]
)
用法 - LiteLLM 代理服务器
以下是如何使用 LiteLLM 代理服务器调用 OpenAI 模型
1. 在您的环境中保存密钥
export OPENAI_API_KEY=""
2. 启动代理
- config.yaml
- config.yaml - 代理所有 OpenAI 模型
- CLI
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: openai/gpt-3.5-turbo # The `openai/` prefix will call openai.chat.completions.create
api_key: os.environ/OPENAI_API_KEY
- model_name: gpt-3.5-turbo-instruct
litellm_params:
model: text-completion-openai/gpt-3.5-turbo-instruct # The `text-completion-openai/` prefix will call openai.completions.create
api_key: os.environ/OPENAI_API_KEY
使用此方法可以用一个 API 密钥添加所有 OpenAI 模型。警告:这将不进行任何负载均衡 这意味着对 gpt-4
, gpt-3.5-turbo
, gpt-4-turbo-preview
的请求都将通过此路由。
model_list:
- model_name: "*" # all requests where model not in your config go to this deployment
litellm_params:
model: openai/* # set `openai/` to use the openai route
api_key: os.environ/OPENAI_API_KEY
$ litellm --model gpt-3.5-turbo-instruct
# Server running on http://0.0.0.0:4000
3. 测试
- Curl 请求
- OpenAI v1.0.0+
- Langchain
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data ' {
"model": "gpt-3.5-turbo-instruct",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
]
}
'
import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:4000"
)
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo-instruct", messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
])
print(response)
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000", # set openai_api_base to the LiteLLM Proxy
model = "gpt-3.5-turbo-instruct",
temperature=0.1
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
OpenAI 文本补全模型 / 指令模型
模型名称 | 函数调用 |
---|---|
gpt-3.5-turbo-instruct | response = completion(model="gpt-3.5-turbo-instruct", messages=messages) |
gpt-3.5-turbo-instruct-0914 | response = completion(model="gpt-3.5-turbo-instruct-0914", messages=messages) |
text-davinci-003 | response = completion(model="text-davinci-003", messages=messages) |
ada-001 | response = completion(model="ada-001", messages=messages) |
curie-001 | response = completion(model="curie-001", messages=messages) |
babbage-001 | response = completion(model="babbage-001", messages=messages) |
babbage-002 | response = completion(model="babbage-002", messages=messages) |
davinci-002 | response = completion(model="davinci-002", messages=messages) |