Meta Llama
属性 | 详细信息 |
---|---|
描述 | Meta 的 Llama API 提供访问 Meta 的大型语言模型系列的能力。 |
LiteLLM 上的提供商路由 | meta_llama/ |
支持的端点 | /chat/completions , /completions , /responses |
API 参考 | Llama API 参考 ↗ |
必需变量
环境变量
os.environ["LLAMA_API_KEY"] = "" # your Meta Llama API key
支持的模型
信息
此处列出的所有模型 https://llama.developer.meta.com/docs/models/ 都受支持。我们积极维护模型列表、token 窗口等信息 此处。
模型 ID | 输入上下文长度 | 输出上下文长度 | 输入模态 | 输出模态 |
---|---|---|---|---|
Llama-4-Scout-17B-16E-Instruct-FP8 | 128k | 4028 | 文本, 图像 | 文本 |
Llama-4-Maverick-17B-128E-Instruct-FP8 | 128k | 4028 | 文本, 图像 | 文本 |
Llama-3.3-70B-Instruct | 128k | 4028 | 文本 | 文本 |
Llama-3.3-8B-Instruct | 128k | 4028 | 文本 | 文本 |
用法 - LiteLLM Python SDK
非流式
Meta Llama 非流式续写
import os
import litellm
from litellm import completion
os.environ["LLAMA_API_KEY"] = "" # your Meta Llama API key
messages = [{"content": "Hello, how are you?", "role": "user"}]
# Meta Llama call
response = completion(model="meta_llama/Llama-3.3-70B-Instruct", messages=messages)
流式
Meta Llama 流式续写
import os
import litellm
from litellm import completion
os.environ["LLAMA_API_KEY"] = "" # your Meta Llama API key
messages = [{"content": "Hello, how are you?", "role": "user"}]
# Meta Llama call with streaming
response = completion(
model="meta_llama/Llama-3.3-70B-Instruct",
messages=messages,
stream=True
)
for chunk in response:
print(chunk)
用法 - LiteLLM Proxy
将以下内容添加到您的 LiteLLM Proxy 配置文件中
config.yaml
model_list:
- model_name: meta_llama/Llama-3.3-70B-Instruct
litellm_params:
model: meta_llama/Llama-3.3-70B-Instruct
api_key: os.environ/LLAMA_API_KEY
- model_name: meta_llama/Llama-3.3-8B-Instruct
litellm_params:
model: meta_llama/Llama-3.3-8B-Instruct
api_key: os.environ/LLAMA_API_KEY
启动您的 LiteLLM Proxy 服务器
启动 LiteLLM Proxy
litellm --config config.yaml
# RUNNING on http://0.0.0.0:4000
- OpenAI SDK
- LiteLLM SDK
- cURL
通过 Proxy 使用 Meta Llama - 非流式
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="https://:4000", # Your proxy URL
api_key="your-proxy-api-key" # Your proxy API key
)
# Non-streaming response
response = client.chat.completions.create(
model="meta_llama/Llama-3.3-70B-Instruct",
messages=[{"role": "user", "content": "Write a short poem about AI."}]
)
print(response.choices[0].message.content)
通过 Proxy 使用 Meta Llama - 流式
from openai import OpenAI
# Initialize client with your proxy URL
client = OpenAI(
base_url="https://:4000", # Your proxy URL
api_key="your-proxy-api-key" # Your proxy API key
)
# Streaming response
response = client.chat.completions.create(
model="meta_llama/Llama-3.3-70B-Instruct",
messages=[{"role": "user", "content": "Write a short poem about AI."}],
stream=True
)
for chunk in response:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
通过 Proxy 使用 Meta Llama - LiteLLM SDK
import litellm
# Configure LiteLLM to use your proxy
response = litellm.completion(
model="litellm_proxy/meta_llama/Llama-3.3-70B-Instruct",
messages=[{"role": "user", "content": "Write a short poem about AI."}],
api_base="https://:4000",
api_key="your-proxy-api-key"
)
print(response.choices[0].message.content)
通过 Proxy 使用 Meta Llama - LiteLLM SDK 流式
import litellm
# Configure LiteLLM to use your proxy with streaming
response = litellm.completion(
model="litellm_proxy/meta_llama/Llama-3.3-70B-Instruct",
messages=[{"role": "user", "content": "Write a short poem about AI."}],
api_base="https://:4000",
api_key="your-proxy-api-key",
stream=True
)
for chunk in response:
if hasattr(chunk.choices[0], 'delta') and chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
通过 Proxy 使用 Meta Llama - cURL
curl https://:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-proxy-api-key" \
-d '{
"model": "meta_llama/Llama-3.3-70B-Instruct",
"messages": [{"role": "user", "content": "Write a short poem about AI."}]
}'
通过 Proxy 使用 Meta Llama - cURL 流式
curl https://:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-proxy-api-key" \
-d '{
"model": "meta_llama/Llama-3.3-70B-Instruct",
"messages": [{"role": "user", "content": "Write a short poem about AI."}],
"stream": true
}'
有关使用 LiteLLM Proxy 的更详细信息,请参阅 LiteLLM Proxy 文档。