Together AI
LiteLLM 支持 Together AI 上的所有模型。
API 密钥
import os
os.environ["TOGETHERAI_API_KEY"] = "your-api-key"
示例用法
from litellm import completion
os.environ["TOGETHERAI_API_KEY"] = "your-api-key"
messages = [{"role": "user", "content": "Write me a poem about the blue sky"}]
completion(model="together_ai/togethercomputer/Llama-2-7B-32K-Instruct", messages=messages)
Together AI 模型
liteLLM 支持 非流式
和 流式
请求到 https://api.together.xyz/ 上的所有模型
TogetherAI 用法示例 - 注意:liteLLM 支持部署在 TogetherAI 上的所有模型
Llama LLM - 对话
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
togethercomputer/llama-2-70b-chat | completion('together_ai/togethercomputer/llama-2-70b-chat', messages) | os.environ['TOGETHERAI_API_KEY'] |
Llama LLM - 语言 / 指令
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
togethercomputer/llama-2-70b | completion('together_ai/togethercomputer/llama-2-70b', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/LLaMA-2-7B-32K | completion('together_ai/togethercomputer/LLaMA-2-7B-32K', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/Llama-2-7B-32K-Instruct | completion('together_ai/togethercomputer/Llama-2-7B-32K-Instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/llama-2-7b | completion('together_ai/togethercomputer/llama-2-7b', messages) | os.environ['TOGETHERAI_API_KEY'] |
Falcon LLM
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
togethercomputer/falcon-40b-instruct | completion('together_ai/togethercomputer/falcon-40b-instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/falcon-7b-instruct | completion('together_ai/togethercomputer/falcon-7b-instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
Alpaca LLM
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
togethercomputer/alpaca-7b | completion('together_ai/togethercomputer/alpaca-7b', messages) | os.environ['TOGETHERAI_API_KEY'] |
其他对话 LLM
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
HuggingFaceH4/starchat-alpha | completion('together_ai/HuggingFaceH4/starchat-alpha', messages) | os.environ['TOGETHERAI_API_KEY'] |
代码 LLM
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
togethercomputer/CodeLlama-34b | completion('together_ai/togethercomputer/CodeLlama-34b', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/CodeLlama-34b-Instruct | completion('together_ai/togethercomputer/CodeLlama-34b-Instruct', messages) | os.environ['TOGETHERAI_API_KEY'] |
togethercomputer/CodeLlama-34b-Python | completion('together_ai/togethercomputer/CodeLlama-34b-Python', messages) | os.environ['TOGETHERAI_API_KEY'] |
defog/sqlcoder | completion('together_ai/defog/sqlcoder', messages) | os.environ['TOGETHERAI_API_KEY'] |
NumbersStation/nsql-llama-2-7B | completion('together_ai/NumbersStation/nsql-llama-2-7B', messages) | os.environ['TOGETHERAI_API_KEY'] |
WizardLM/WizardCoder-15B-V1.0 | completion('together_ai/WizardLM/WizardCoder-15B-V1.0', messages) | os.environ['TOGETHERAI_API_KEY'] |
WizardLM/WizardCoder-Python-34B-V1.0 | completion('together_ai/WizardLM/WizardCoder-Python-34B-V1.0', messages) | os.environ['TOGETHERAI_API_KEY'] |
语言 LLM
模型名称 | 函数调用 | 必需的操作系统变量 |
---|---|---|
NousResearch/Nous-Hermes-Llama2-13b | completion('together_ai/NousResearch/Nous-Hermes-Llama2-13b', messages) | os.environ['TOGETHERAI_API_KEY'] |
Austism/chronos-hermes-13b | completion('together_ai/Austism/chronos-hermes-13b', messages) | os.environ['TOGETHERAI_API_KEY'] |
upstage/SOLAR-0-70b-16bit | completion('together_ai/upstage/SOLAR-0-70b-16bit', messages) | os.environ['TOGETHERAI_API_KEY'] |
WizardLM/WizardLM-70B-V1.0 | completion('together_ai/WizardLM/WizardLM-70B-V1.0', messages) | os.environ['TOGETHERAI_API_KEY'] |
提示模板
在 Together AI 上使用带有其自身提示格式的对话模型?
使用 Llama2 指令模型
如果你正在使用 Together AI 的 Llama2 变体(model=togethercomputer/llama-2..-instruct
),LiteLLM 可以自动在 OpenAI 提示格式和 TogetherAI Llama2 格式([INST]..[/INST]
)之间进行转换。
from litellm import completion
# set env variable
os.environ["TOGETHERAI_API_KEY"] = ""
messages = [{"role": "user", "content": "Write me a poem about the blue sky"}]
completion(model="together_ai/togethercomputer/Llama-2-7B-32K-Instruct", messages=messages)
使用其他模型
你可以在 LiteLLM 上创建自定义提示模板(我们 欢迎 PR 将它们添加到主仓库 🤗)
让我们为 OpenAssistant/llama2-70b-oasst-sft-v10
创建一个!
可接受的模板格式为:参考
"""
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
"""
让我们注册自定义提示模板:实现代码
import litellm
litellm.register_prompt_template(
model="OpenAssistant/llama2-70b-oasst-sft-v10",
roles={
"system": {
"pre_message": "[<|im_start|>system",
"post_message": "\n"
},
"user": {
"pre_message": "<|im_start|>user",
"post_message": "\n"
},
"assistant": {
"pre_message": "<|im_start|>assistant",
"post_message": "\n"
}
}
)
让我们使用它!
from litellm import completion
# set env variable
os.environ["TOGETHERAI_API_KEY"] = ""
messages=[{"role":"user", "content": "Write me a poem about the blue sky"}]
completion(model="together_ai/OpenAssistant/llama2-70b-oasst-sft-v10", messages=messages)
完整代码
import litellm
from litellm import completion
# set env variable
os.environ["TOGETHERAI_API_KEY"] = ""
litellm.register_prompt_template(
model="OpenAssistant/llama2-70b-oasst-sft-v10",
roles={
"system": {
"pre_message": "[<|im_start|>system",
"post_message": "\n"
},
"user": {
"pre_message": "<|im_start|>user",
"post_message": "\n"
},
"assistant": {
"pre_message": "<|im_start|>assistant",
"post_message": "\n"
}
}
)
messages=[{"role":"user", "content": "Write me a poem about the blue sky"}]
response = completion(model="together_ai/OpenAssistant/llama2-70b-oasst-sft-v10", messages=messages)
print(response)
输出
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": ".\n\nThe sky is a canvas of blue,\nWith clouds that drift and move,",
"role": "assistant",
"logprobs": null
}
}
],
"created": 1693941410.482018,
"model": "OpenAssistant/llama2-70b-oasst-sft-v10",
"usage": {
"prompt_tokens": 7,
"completion_tokens": 16,
"total_tokens": 23
},
"litellm_call_id": "f21315db-afd6-4c1e-b43a-0b5682de4b06"
}
Rerank
用法
- LiteLLM SDK 用法
- LiteLLM 代理用法
from litellm import rerank
import os
os.environ["TOGETHERAI_API_KEY"] = "sk-.."
query = "What is the capital of the United States?"
documents = [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country.",
]
response = rerank(
model="together_ai/rerank-english-v3.0",
query=query,
documents=documents,
top_n=3,
)
print(response)
LiteLLM 提供一个与 cohere api 兼容的 /rerank
端点用于 Rerank 调用。
设置
将此添加到你的 litellm 代理 config.yaml
model_list:
- model_name: Salesforce/Llama-Rank-V1
litellm_params:
model: together_ai/Salesforce/Llama-Rank-V1
api_key: os.environ/TOGETHERAI_API_KEY
启动 litellm
litellm --config /path/to/config.yaml
# RUNNING on http://0.0.0.0:4000
测试请求
curl http://0.0.0.0:4000/rerank \
-H "Authorization: Bearer sk-1234" \
-H "Content-Type: application/json" \
-d '{
"model": "Salesforce/Llama-Rank-V1",
"query": "What is the capital of the United States?",
"documents": [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country."
],
"top_n": 3
}'