跳到主要内容

Replicate

LiteLLM 支持 Replicate 上的所有模型

用法

API 密钥

import os 
os.environ["REPLICATE_API_KEY"] = ""

示例调用

from litellm import completion
import os
## set ENV variables
os.environ["REPLICATE_API_KEY"] = "replicate key"

# replicate llama-3 call
response = completion(
model="replicate/meta/meta-llama-3-8b-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)

高级用法 - 提示词格式化

LiteLLM 为所有 meta-llama llama3 instruct 模型提供了提示词模板映射。查看代码

应用自定义提示词模板

import litellm

import os
os.environ["REPLICATE_API_KEY"] = ""

# Create your own custom prompt template
litellm.register_prompt_template(
model="togethercomputer/LLaMA-2-7B-32K",
initial_prompt_value="You are a good assistant" # [OPTIONAL]
roles={
"system": {
"pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
"post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
},
"user": {
"pre_message": "[INST] ", # [OPTIONAL]
"post_message": " [/INST]" # [OPTIONAL]
},
"assistant": {
"pre_message": "\n" # [OPTIONAL]
"post_message": "\n" # [OPTIONAL]
}
}
final_prompt_value="Now answer as best you can:" # [OPTIONAL]
)

def test_replicate_custom_model():
model = "replicate/togethercomputer/LLaMA-2-7B-32K"
response = completion(model=model, messages=messages)
print(response['choices'][0]['message']['content'])
return response

test_replicate_custom_model()

高级用法 - 调用 Replicate 部署

调用已部署的 Replicate LLM 在模型名称前添加 replicate/deployments/ 前缀,这样 litellm 就会调用 deployments 端点。这将调用 replicate 上的 ishaan-jaff/ishaan-mistral 部署

response = completion(
model="replicate/deployments/ishaan-jaff/ishaan-mistral",
messages= [{ "content": "Hello, how are you?","role": "user"}]
)
Replicate 冷启动

由于 Replicate 冷启动,响应可能需要 3-5 分钟。如果你正在调试,请尝试使用 litellm.set_verbose=True 发送请求。更多关于 Replicate 冷启动的信息

Replicate 模型

liteLLM 支持所有 Replicate LLM

对于 Replicate 模型,请确保在 model 参数前添加 replicate/ 前缀。liteLLM 使用此参数检测它。

以下是使用 liteLLM 调用 Replicate LLM 的示例

模型名称函数调用必需的操作系统变量
replicate/llama-2-70b-chatcompletion(model='replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf', messages)os.environ['REPLICATE_API_KEY']
a16z-infra/llama-2-13b-chatcompletion(model='replicate/a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52', messages)os.environ['REPLICATE_API_KEY']
replicate/vicuna-13bcompletion(model='replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b', messages)os.environ['REPLICATE_API_KEY']
daanelson/flan-t5-largecompletion(model='replicate/daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f', messages)os.environ['REPLICATE_API_KEY']
自定义 LLMcompletion(model='replicate/custom-llm-version-id', messages)os.environ['REPLICATE_API_KEY']
Replicate 部署completion(model='replicate/deployments/ishaan-jaff/ishaan-mistral', messages)os.environ['REPLICATE_API_KEY']

传递附加参数 - max_tokens, temperature

查看所有 litellm.completion 支持的参数此处

# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["REPLICATE_API_KEY"] = "replicate key"

# replicate llama-2 call
response = completion(
model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)

代理

  model_list:
- model_name: llama-3
litellm_params:
model: replicate/meta/meta-llama-3-8b-instruct
api_key: os.environ/REPLICATE_API_KEY
max_tokens: 20
temperature: 0.5

传递 Replicate 特定参数

发送 litellm.completion() 不支持,但 Replicate 支持的参数,将其传递给 litellm.completion

示例:seed, min_tokens 是 Replicate 特定参数

# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["REPLICATE_API_KEY"] = "replicate key"

# replicate llama-2 call
response = completion(
model="replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
messages = [{ "content": "Hello, how are you?","role": "user"}],
seed=-1,
min_tokens=2,
top_k=20,
)

代理

  model_list:
- model_name: llama-3
litellm_params:
model: replicate/meta/meta-llama-3-8b-instruct
api_key: os.environ/REPLICATE_API_KEY
min_tokens: 2
top_k: 20