跳到主内容

💰 设置团队预算

跟踪开销,为内部团队设置预算

设置每月团队预算

1. 创建团队

  • 设置 max_budget=000000001 (团队被允许花费的美元金额)
  • 设置 budget_duration="1d" (预算应多久更新一次)

创建新团队并设置 max_budgetbudget_duration

curl -X POST 'http://0.0.0.0:4000/team/new' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{
"team_alias": "QA Prod Bot",
"max_budget": 0.000000001,
"budget_duration": "1d"
}'

响应

{
"team_alias": "QA Prod Bot",
"team_id": "de35b29e-6ca8-4f47-b804-2b79d07aa99a",
"max_budget": 0.0001,
"budget_duration": "1d",
"budget_reset_at": "2024-06-14T22:48:36.594000Z"
}

budget_duration 的可能值

budget_duration预算何时重置
budget_duration="1s"每 1 秒
budget_duration="1m"每 1 分钟
budget_duration="1h"每 1 小时
budget_duration="1d"每 1 天
budget_duration="30d"每 1 个月

2. 为 team 创建密钥

为 Team=QA Prod Bot 和 Step 1 中的 team_id="de35b29e-6ca8-4f47-b804-2b79d07aa99a" 创建密钥

💡 为 Team="QA Prod Bot" 设置的预算将应用于此团队

curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{"team_id": "de35b29e-6ca8-4f47-b804-2b79d07aa99a"}'

响应

{"team_id":"de35b29e-6ca8-4f47-b804-2b79d07aa99a", "key":"sk-5qtncoYjzRcxMM4bDRktNQ"}

3. 测试

使用步骤 2 中的密钥并运行此请求两次

curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Authorization: Bearer sk-mso-JSykEGri86KyOvgxBw' \
-H 'Content-Type: application/json' \
-d ' {
"model": "llama3",
"messages": [
{
"role": "user",
"content": "hi"
}
]
}'

在第二次响应时 - 预期会看到以下异常

{
"error": {
"message": "Budget has been exceeded! Current cost: 3.5e-06, Max budget: 1e-09",
"type": "auth_error",
"param": null,
"code": 400
}
}

高级

remaining_budget 的 Prometheus 指标

此处有更多关于 Prometheus 指标的信息

你需要在代理的 config.yaml 中包含以下内容

litellm_settings:
success_callback: ["prometheus"]
failure_callback: ["prometheus"]

预期在 prometheus 上看到此指标以跟踪团队的剩余预算

litellm_remaining_team_budget_metric{team_alias="QA Prod Bot",team_id="de35b29e-6ca8-4f47-b804-2b79d07aa99a"} 9.699999999999992e-06

动态 TPM/RPM 分配

防止项目占用过多的 tpm/rpm。

根据该分钟内的活跃密钥动态分配 TPM/RPM 配额给 API 密钥。 查看代码

  1. 设置 config.yaml
model_list: 
- model_name: my-fake-model
litellm_params:
model: gpt-3.5-turbo
api_key: my-fake-key
mock_response: hello-world
tpm: 60

litellm_settings:
callbacks: ["dynamic_rate_limiter"]

general_settings:
master_key: sk-1234 # OR set `LITELLM_MASTER_KEY=".."` in your .env
database_url: postgres://.. # OR set `DATABASE_URL=".."` in your .env
  1. 启动代理
litellm --config /path/to/config.yaml
  1. 测试!
"""
- Run 2 concurrent teams calling same model
- model has 60 TPM
- Mock response returns 30 total tokens / request
- Each team will only be able to make 1 request per minute
"""

import requests
from openai import OpenAI, RateLimitError

def create_key(api_key: str, base_url: str):
response = requests.post(
url="{}/key/generate".format(base_url),
json={},
headers={
"Authorization": "Bearer {}".format(api_key)
}
)

_response = response.json()

return _response["key"]

key_1 = create_key(api_key="sk-1234", base_url="http://0.0.0.0:4000")
key_2 = create_key(api_key="sk-1234", base_url="http://0.0.0.0:4000")

# call proxy with key 1 - works
openai_client_1 = OpenAI(api_key=key_1, base_url="http://0.0.0.0:4000")

response = openai_client_1.chat.completions.with_raw_response.create(
model="my-fake-model", messages=[{"role": "user", "content": "Hello world!"}],
)

print("Headers for call 1 - {}".format(response.headers))
_response = response.parse()
print("Total tokens for call - {}".format(_response.usage.total_tokens))


# call proxy with key 2 - works
openai_client_2 = OpenAI(api_key=key_2, base_url="http://0.0.0.0:4000")

response = openai_client_2.chat.completions.with_raw_response.create(
model="my-fake-model", messages=[{"role": "user", "content": "Hello world!"}],
)

print("Headers for call 2 - {}".format(response.headers))
_response = response.parse()
print("Total tokens for call - {}".format(_response.usage.total_tokens))
# call proxy with key 2 - fails
try:
openai_client_2.chat.completions.with_raw_response.create(model="my-fake-model", messages=[{"role": "user", "content": "Hey, how's it going?"}])
raise Exception("This should have failed!")
except RateLimitError as e:
print("This was rate limited b/c - {}".format(str(e)))

预期响应

This was rate limited b/c - Error code: 429 - {'error': {'message': {'error': 'Key=<hashed_token> over available TPM=0. Model TPM=0, Active keys=2'}, 'type': 'None', 'param': 'None', 'code': 429}}

[BETA]设置优先级 / 保留配额

为生产环境中的项目保留 tpm/rpm 容量。

提示

根据优先级保留密钥的 tpm/rpm 是高级功能。请获取企业版许可证以使用此功能。

  1. 设置 config.yaml
model_list:
- model_name: gpt-3.5-turbo
litellm_params:
model: "gpt-3.5-turbo"
api_key: os.environ/OPENAI_API_KEY
rpm: 100

litellm_settings:
callbacks: ["dynamic_rate_limiter"]
priority_reservation: {"dev": 0, "prod": 1}

general_settings:
master_key: sk-1234 # OR set `LITELLM_MASTER_KEY=".."` in your .env
database_url: postgres://.. # OR set `DATABASE_URL=".."` in your .env

priority_reservation

  • 字典[str, float]
    • str: 可以是任何字符串
    • float: 从 0 到 1。指定为此优先级密钥保留的 tpm/rpm 百分比。

启动代理

litellm --config /path/to/config.yaml
  1. 创建具有该优先级的密钥
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'Authorization: Bearer <your-master-key>' \
-H 'Content-Type: application/json' \
-D '{
"metadata": {"priority": "dev"} # 👈 KEY CHANGE
}'

预期响应

{
...
"key": "sk-.."
}
  1. 测试!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: sk-...' \ # 👈 key from step 2.
-D '{
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
}'

预期响应

Key=... over available RPM=0. Model RPM=100, Active keys=None