Bedrock 知识库
AWS Bedrock 知识库允许您将 LLM 连接到您组织的数据,让您的模型检索和引用特定于您业务的信息。
属性 | 详细信息 |
---|---|
描述 | Bedrock 知识库将您的数据连接到 LLM,使其能够在响应中检索和引用您组织的信息。 |
LiteLLM 上的提供商路由 | bedrock 在 litellm vector_store_registry 中 |
提供商文档 | AWS Bedrock 知识库 ↗ |
快速开始
LiteLLM Python SDK
使用 LiteLLM Python SDK 的示例
import os
import litellm
from litellm.vector_stores.vector_store_registry import VectorStoreRegistry, LiteLLM_ManagedVectorStore
# Init vector store registry with your Bedrock Knowledge Base
litellm.vector_store_registry = VectorStoreRegistry(
vector_stores=[
LiteLLM_ManagedVectorStore(
vector_store_id="YOUR_KNOWLEDGE_BASE_ID", # KB ID from AWS Bedrock
custom_llm_provider="bedrock"
)
]
)
# Make a completion request using your Knowledge Base
response = await litellm.acompletion(
model="anthropic/claude-3-5-sonnet",
messages=[{"role": "user", "content": "What does our company policy say about remote work?"}],
tools=[
{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"]
}
],
)
print(response.choices[0].message.content)
LiteLLM 代理
1. 配置您的 vector_store_registry
- config.yaml
- LiteLLM UI
model_list:
- model_name: claude-3-5-sonnet
litellm_params:
model: anthropic/claude-3-5-sonnet
api_key: os.environ/ANTHROPIC_API_KEY
vector_store_registry:
- vector_store_name: "bedrock-company-docs"
litellm_params:
vector_store_id: "YOUR_KNOWLEDGE_BASE_ID"
custom_llm_provider: "bedrock"
vector_store_description: "Bedrock Knowledge Base for company documents"
vector_store_metadata:
source: "Company internal documentation"
在 LiteLLM UI 上,导航至 Experimental > Vector Stores > Create Vector Store。在此页面上,您可以创建一个包含名称、向量存储 ID 和凭据的向量存储。
2. 使用 vector_store_ids 参数发起请求
- Curl
- OpenAI Python SDK
curl http://localhost:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_API_KEY" \
-d '{
"model": "claude-3-5-sonnet",
"messages": [{"role": "user", "content": "What does our company policy say about remote work?"}],
"tools": [
{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"]
}
]
}'
from openai import OpenAI
# Initialize client with your LiteLLM proxy URL
client = OpenAI(
base_url="http://localhost:4000",
api_key="your-litellm-api-key"
)
# Make a completion request with vector_store_ids parameter
response = client.chat.completions.create(
model="claude-3-5-sonnet",
messages=[{"role": "user", "content": "What does our company policy say about remote work?"}],
tools=[
{
"type": "file_search",
"vector_store_ids": ["YOUR_KNOWLEDGE_BASE_ID"]
}
]
)
print(response.choices[0].message.content)
进一步阅读:向量存储